Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 251
1.
Int J Biol Macromol ; 267(Pt 1): 131468, 2024 May.
Article En | MEDLINE | ID: mdl-38599432

In this work, the changes in the composition of the flours and in the morphological, structural, thermal, vibrational, rheological, and functional properties of the isolated lentil starch during the germination process were investigated. The fiber, fat, and ash content of the flours decreased and the protein content increased, while the apparent amylose content of the starch granules remained constant. Using scanning electron microscopy (SEM), the starch granules remained intact during germination, and no enzymatic activity of α- and ß-amylases was observed. X-ray diffraction shows that the starch has nanocrystals with hexagonal structure which predominate over the nanocrystals with orthorhombic structure and are classified as C-type starch. The most important result is that these nanocrystals do not play an important role during germination. As the germination time progresses, differential scanning calorimetry (DSC) shows a decrease in the gelatinization temperature (Tp) of the starch, ranging from 70.34 ± 0.25 °C for the native lentil starch to values of 67.16 ± 0.37 °C for the starch on the fourth day of germination (ILS4), this transition being related to the solvation of the nanocrystals. On the other hand, the pasting profiles show no significant changes during germination, indicating that no significant changes in starch content occur during germination. Starch degradation is essential for the production of malt for fermented beverages. This fact makes sprouted lentils not a candidate for the short-term fermentation required in the beverage industry.


Germination , Lens Plant , Starch , Lens Plant/chemistry , Starch/chemistry , Starch/metabolism , Chemical Phenomena , Amylose/chemistry , Temperature , Rheology
2.
Food Chem ; 448: 139104, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38547711

Legume proteins can be induced to form amyloid-like fibrils upon heating at low pH, with the exact conditions greatly impacting the fibril characteristics. The protein extraction method may also impact the resulting fibrils, although this effect has not been carefully examined. Here, the fibrillization of lentil protein prepared using various extraction methods and the corresponding fibril morphology were characterized. It was found that an acidic, rather than alkaline, protein extraction method was better suited for producing homogeneous, long, and straight fibrils from lentil proteins. During alkaline extraction, co-extracted phenolic compounds bound proteins through covalent and non-covalent interactions, contributing to the formation of heterogeneous, curly, and tangled fibrils. Recombination of isolated phenolics and proteins (from acidic extracts) at alkaline pH resulted in a distinct morphology, implicating a role for polyphenol oxidase also in modifying proteins during alkaline extraction. These results help disentangle the complex factors affecting legume protein fibrillization.


Lens Plant , Phenols , Plant Proteins , Lens Plant/chemistry , Phenols/chemistry , Phenols/isolation & purification , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Hydrogen-Ion Concentration , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Amyloid/chemistry , Chemical Fractionation/methods
3.
Food Chem ; 447: 138882, 2024 Jul 30.
Article En | MEDLINE | ID: mdl-38452537

The two limiting factors for lentil protein utilization are water solubility and digestibility. In this study, we utilized two non-thermal techniques: (1) protein complexation of lentil and casein proteins using the pH-shifting method and (2) protein conjugation with trehalose to produce trehalose-conjugated lentil-casein protein complexes (T-CPs) with enhanced water solubility and digestibility. The protein structure of the T-CPs was analyzed for secondary protein structure, conformation protein, and tertiary protein structure using Fourier-transform infrared, UV, and fluorescence spectroscopies, respectively. The surface hydrophobicity and surface charge of T-CPs solution at pH 7.0 changed significantly (P < 0.05). Using these two non-thermal techniques, the water solubility and digestibility of T-CPs increased significantly (P < 0.05) by 85 to 89 % and 80 to 85 %, respectively. The results of this study suggested that these non-thermal techniques could enhance the surface and protein structure properties, improving water solubility and digestibility.


Caseins , Lens Plant , Solubility , Caseins/metabolism , Lens Plant/chemistry , Trehalose , Water/chemistry
4.
J Sci Food Agric ; 104(1): 104-115, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-37535858

BACKGROUND: Lentils are an ancient legume established worldwide for direct consumption and with great potential for application in food processing. In addition, it is a sustainable crop owing to its ability to scavenge nitrogen and carbon, and it improves the nutrient status of the soil. A diet rich in lentils has been linked to significant health benefits. However, the composition of lentils can be influenced by both the lentil variety and the growing conditions. The aim of this work was to evaluate the nutritional profiles and antioxidant potential, as well as the impact that the type of cultivation (conventional or organic) and the variety could have on these parameters, in different lentil varieties. RESULTS: Overall, carbohydrates are the major macronutrients in all varieties, with notable amounts of fibre (11.62-27.36%) and starch (41.98-50.27%). High amounts of protein and ash were also identified, particularly in the Beluga variety, with 21.9-23.3 and 1.38-1.82 g 100 g-1 fresh weight, respectively. Fructose and sucrose were detected (high-performance liquid chromatography (HPLC) with refraction index detection), along with oxalic, quinic, malic, and shikimic acids (ultra-fast liquid chromatography with photodiode array detection), and α- and γ-tocopherol isoforms (HPLC with fluorescence detection). Fatty acid methyl ester assessment showed the prevalence of polyunsaturated fatty acids (33.5-46.3%). Good antioxidant capacity (thiobarbituric acid reactive substances and oxidative haemolysis inhibition assay) was also noted. CONCLUSION: The results obtained showed that all the varieties analysed are an excellent source of fibre and have a good antioxidant capacity. Lentil variety has a greater influence on its nutritional composition than the type of cultivation. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Antioxidants , Lens Plant , Antioxidants/analysis , Lens Plant/chemistry , Agriculture/methods , Soil , Oxidation-Reduction , Fatty Acids/metabolism
5.
Int J Biol Macromol ; 253(Pt 6): 127313, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37820922

This study aims to assess the impact of heat treatment on the emulsifying properties of lentil protein isolate (LPI) dispersion to produce high internal phase emulsions (HIPEs). The heat-treated LPI dispersion was characterized by size, turbidity, solubility, zeta potential, free sulfhydryl group, electrophoresis, differential scanning calorimetry, circular dichroism, Fourier transforms infrared spectroscopy and intrinsic fluorescence. HIPEs were produced with 25% of LPI dispersion (2%, w/w) and soybean oil (75%) using a rotor-stator (15,500 rpm/1 min). HIPEs were evaluated for their droplet size, zeta potential, centrifugal stability, microscopy, appearance, Turbiscan stability, and rheology over 60 days (25 °C). Heat treatment reduced the size of LPI, resulting in increased turbidity, solubility, and exposure of hydrophobic groups. HIPEs produced with heat-treated LPI at 70 °C (HIPE70) and 80 °C (HIPE80) for 20 min exhibited lower droplet sizes, increased stability, reduced oil loss, and a homogeneous appearance compared to HIPE produced with untreated LPI (HIPEc). In addition, HIPE70 and HIPE80 displayed resistance to shear stress, higher apparent viscosity, and increased storage modulus than HIPEc. HIPEs produced with heat-treated LPI were stable, suggesting that the treatment was efficient for improving the functional properties of the protein and the possibility of future research focusing on fat substitutes in food applications.


Lens Plant , Emulsions/chemistry , Lens Plant/chemistry , Whey Proteins/chemistry , Particle Size
6.
Molecules ; 28(10)2023 May 16.
Article En | MEDLINE | ID: mdl-37241860

Instant controlled pressure drop (DIC) is one of the emerging technologies in food processing; it can be used for drying, freezing and the extraction of bioactive molecules without damaging their properties. Legumes, such as lentils, are one of the most consumed foods in the world; however, they are mainly cooked by boiling, which causes the loss of antioxidant compounds. This work evaluated the effect of 13 different DIC treatments (with pressure ranges of 0.1-0.7 MPa and times of 30-240 s) on the content of polyphenols (Folin-Ciocalteu and High Performance Liquid Chromatography HPLC) and flavonoids (2-aminoethyl diphenylborinate) as well as the antioxidant activity (DPPH and TEAC) of green lentils. The DIC 11 treatment (0.1 MPa, 135 s) obtained the best release of polyphenols, which in turn are related to antioxidant capacity. The abiotic stress generated by DIC could lead to the breakdown of the cell wall structure, which favors the availability of antioxidant compounds. Finally, the most efficient conditions for DIC to promote the release of phenolic compounds and maintain antioxidant capacity were found under low pressures (<0.1 MPa) and short times (<160 s).


Antioxidants , Lens Plant , Antioxidants/chemistry , Polyphenols/analysis , Flavonoids/chemistry , Lens Plant/chemistry , Phenols/chemistry , Chromatography, High Pressure Liquid
7.
Sensors (Basel) ; 23(3)2023 Jan 29.
Article En | MEDLINE | ID: mdl-36772530

Lentil flour is an important source of minerals, including iron, so its use in food fortification programs is becoming increasingly important. In this study, the potential of near infrared technology to discriminate the presence of lentil flour in fortified wheat flours and the quantification of their mineral composition is evaluated. Three varieties of lentils (Castellana, Pardina and Guareña) were used to produce flours, and a total of 153 samples of wheat flours fortified with them have been analyzed. The results show that it is possible to discriminate fortified flours with 100% efficiency according to their lentil flour content and to discriminate them according to the variety of lentil flour used. Regarding their mineral composition, the models developed have shown that it is possible to predict the Ca, Mg, Fe, K and P content in fortified flours using near infrared spectroscopy. Moreover, these models can be applied to unknown samples with results comparable to ICP-MS determination of these minerals.


Flour , Lens Plant , Lens Plant/chemistry , Triticum , Minerals , Iron
8.
Cells ; 12(4)2023 02 10.
Article En | MEDLINE | ID: mdl-36831242

We evaluated the effects of a new extract (70% acetonitrile, 2E0217022196DIPFARMTDA) of Lens culinaris Medik (Terre di Altamura SRL, Altamura BA) to prevent cytotoxic damage from cisplatin, staurosporine, irinotecan, doxorubicin, and the glucocorticoid dexamethasone. The acetonitrile-water extract (range 0.1-5 mg/mL) was obtained by extracting 10 g of lentil flour with 50 milliliters of the acetonitrile-water extraction mixture in a 70:30 ratio, first for 3 h and then overnight in a shaker at room temperature. The next day, the extract was filtered and passed through a Rotavapor to obtain only the aqueous component and eliminate that with acetonitrile, and then freeze-dried to finally have the powdered extract. In vitro experiments showed that the extract prevented the cytotoxic damage induced by cisplatin, irinotecan, and doxorubicin on HEK293 and SHSY5Y cell lines after 24-96 h. In murine osteoblasts after 24-72 h of incubation time, the extract was cytoprotective against all chemicals. The extract was effective against dexamethasone, leading to synergic cell proliferation in all cell types. In bone marrow cells, the extract is cytoprotective after 72 h against doxorubicin, staurosporine, and dexamethasone. Instead, on muscle fibers, the extract has a synergic effect with chemotherapeutics, increasing cytotoxicity induced by doxorubicin and staurosporine. LC-MS attested to the existence of several phenolic structures in the extract. The most abundant families of compounds were flavonoids (25.7%) and mellitic acid (18%). Thus, the development of this extract could be implemented in the area of research related to the chemoprevention of damage to renal, neuronal, bone marrow cells, and osteoblasts by chemotherapeutics; moreover, it could be used as a reinforcer of cytotoxic action of chemotherapeutics on muscle fibers.


Lens Plant , Humans , Animals , Mice , Lens Plant/chemistry , Lens Plant/metabolism , Water/metabolism , Irinotecan , Cisplatin/metabolism , HEK293 Cells , Staurosporine , Mass Spectrometry , Acetonitriles/metabolism , Doxorubicin , Dexamethasone
9.
Plant Physiol Biochem ; 196: 402-414, 2023 Mar.
Article En | MEDLINE | ID: mdl-36758288

Weed invasion causes significant yield losses in lentil. Imazethapyr (IM), a broad-spectrum herbicide inhibits the biosynthesis of branched chain amino acids necessary for plant growth. Plant growth depends upon translocation of photo-assimilates and their partitioning regulated by carbon and nitrogen metabolism. This study aimed to investigate the impact of imazethapyr spray on carbon and nitrogen metabolism in tolerant (LL1397 and LL1612) and susceptible (FLIP2004-7L and PL07) lentil genotypes during vegetative and reproductive development. Significantly higher activities of invertases and sucrose synthase (cleavage) in leaves and in podwall and seeds during early phase of development in tolerant genotypes were observed as compared to susceptible genotypes under herbicide stress that might be responsible for providing hexoses required for their growth. Activities of sucrose synthesizing enzymes, sucrose phosphate synthase and sucrose synthase (synthesis) increased significantly in podwalls and seeds of LL1397 and LL1612 genotypes during later phase of development towards maturity while the activities decreased in FLIP2004-7L and PL07 genotypes under herbicide stress. Activities of nitrate and nitrite reductase, glutamine 2-oxoglutarate aminotransferase, glutamine synthetase and glutamate dehydrogenase were increased in leaves, podwalls and seeds of LL1397 and LL1612 under herbicide stress. A proper synchronization of carbon and nitrogen metabolism in tolerant lentil genotypes during vegetative and reproductive phase might be one of the mechanisms for their recovery from herbicide stress. This first ever comprehensive information will provide a basis for future studies on the molecular mechanism of source sink relationship in lentil under herbicide stress and will be utilized in breeding programmes.


Herbicides , Lens Plant , Herbicides/pharmacology , Herbicides/metabolism , Lens Plant/chemistry , Lens Plant/genetics , Lens Plant/metabolism , Carbon/metabolism , Plant Breeding , Nitrogen/metabolism
10.
Food Chem ; 407: 135145, 2023 May 01.
Article En | MEDLINE | ID: mdl-36521391

The seed coat is a major byproduct of lentil processing with potential as a sustainable source of antioxidant polyphenols. Profiles of water-soluble phenolic compounds and antioxidant activities of seven genotypes of lentil which includes both normal-tannin and low-tannin seed coats were investigated. Antioxidant activities were assessed using four antioxidant assays, and phenolic compounds were quantified using liquid chromatography mass spectrometry (LC-MS). Total phenolic content (TPC) varied significantly among genotypes and ranged between 1519 ± 140 and 6502 ± 154 µg/g. Thirty phenolic compounds were identified with kaempferol tetraglycoside, catechin-3-glucoside and procyanidins being the dominant compounds in normal-tannin seed coats. Kaempferol tetraglycoside predominated (80-90%) in low-tannin seed coats. Antioxidant activities strongly correlated with TPC (r > 0.93) with a 6-9 times higher activity in normal-tannin than that of low-tannin lentils. Without flavan-3-ols and procyanidins, low-tannin seed coat may not exert strong antioxidant potential, whereas normal-tannin seed coat contains water-extractable natural phenolic compounds with promising antioxidant potential.


Lens Plant , Proanthocyanidins , Antioxidants/chemistry , Proanthocyanidins/analysis , Lens Plant/genetics , Lens Plant/chemistry , Kaempferols/analysis , Phenols/analysis , Tannins/analysis , Seeds/genetics , Seeds/chemistry , Genotype
11.
Molecules ; 27(23)2022 Dec 02.
Article En | MEDLINE | ID: mdl-36500548

In this study, the comprehensive chemical characterization of red lentil hulls obtained from the industrial production of football and split lentils was described. The lentil hulls were rich in dietary fiber (78.43 g/100 g dry weight with an insoluble to soluble fiber ratio of 4:1) and polyphenols (49.3 mg GAE/g dry weight, of which 55% was bound phenolics), which revealed the suitability of this lentil by-product as a source of bioactive compounds with recognized antioxidant and prebiotic properties. The release of oligosaccharides and phenolic compounds was accomplished by enzymatic hydrolysis, microwave treatment and a combination of both technologies. The key role played by the selection of a suitable enzymatic preparation was highlighted to maximize the yield of bioactive compounds and the functional properties of the lentil hull hydrolysates. Out of seven commercial preparations, the one with the most potential for use in a commercial context was Pectinex® Ultra Tropical, which produced the highest yields of oligosaccharides (14 g/100 g lentil hull weight) and free phenolics (45.5 mg GAE/100 g lentil hull weight) and delivered a four-fold increase in terms of the original antioxidant activity. Finally, this enzyme was selected to analyze the effect of a microwave-assisted extraction pretreatment on the yield of enzymatic hydrolysis and the content of free phenolic compounds and oligosaccharides. The integrated microwave and enzymatic hydrolysis method, although it increased the solubilization yield of the lentil hulls (from 25% to 34%), it slightly decreased the content of oligosaccharides and proanthocyanidins and reduced the antioxidant activity. Therefore, the enzymatic hydrolysis treatment alone was more suitable for producing a lentil hull hydrolysate enriched in potential prebiotics and antioxidant compounds.


Lens Plant , Lens Plant/chemistry , Antioxidants/chemistry , Phenols/analysis , Oligosaccharides/chemistry , Dietary Fiber/analysis , Prebiotics
12.
J Biosci ; 472022.
Article En | MEDLINE | ID: mdl-36222143

Investigations were carried out to analyze the role of anatase nanoparticles in inducing genetic variability in lentils (Lens culinaris Medik.) for yield improvement and subsequent involvement in development, quality, and biochemical response of second-generation seedlings through their lifecycle. Trans-generational alterations in the morphological and biochemical pool of the plant system were evaluated over a range of concentrations (25-200 µg/mL). Analysis of F2 seedlings showed an increase in yield parameters at the lowest concentration (25 µg/mL). Biochemical studies revealed that the F2 plants experienced lower oxidative stress as compared with previous generation plants. Quality analysis of seeds revealed a slight positive shift in the mean values of seed protein content at the lowest concentration. The effect of nanoparticles on the growth parameters was antagonistic except at the lowest concentration, where the growth parameters were found to be slightly higher than in the controls. The variability present in different traits in the F2 populations was quantified as phenotypic variability and its components, which is a measure of the transmissibility of variations of the so-called mutated populations as a result of nanoparticle application.


Lens Plant , Nanoparticles , Lens Plant/chemistry , Lens Plant/genetics , Lens Plant/metabolism , Seedlings/genetics , Seeds/metabolism , Titanium/analysis , Titanium/metabolism , Titanium/pharmacology
13.
Biomed Res Int ; 2022: 9679181, 2022.
Article En | MEDLINE | ID: mdl-35898676

Lentil is a notable legume crop valued for its high protein, vitamin, mineral, and amino acid (lysine and tryptophan) content. This crop has a narrow genetic base due to the formation of gene pool barriers during interspecific hybridization within and across species. Mutagenesis may be seen as a novel and alternative breeding technique for the production of new diversity. For the identification of new alleles, the creation of mutants followed by selection in subsequent generations would be necessary. Induction of mutation in lentil cv. Moitree by gamma rays therefore produced high variation for the majority of quantitative measures examined. Henceforth, principal component analysis (PCA) and path coefficient analysis were conducted to identify and exclude redundant mutant genotypes with similar traits as the success of breeding is dependent on understanding the relationship between morpho-agronomic traits and seed yield. As shown by the findings of this research, the total quantity of pods per mutant plant should be given considerable priority. The identified mutant genotypes, such as lines 24, 43, 28, 33, and 10, may be used as parents in future breeding or released directly following trials.


Lens Plant , Gamma Rays , Lens Plant/chemistry , Lens Plant/genetics , Mutation/genetics , Phenotype , Plant Breeding/methods
14.
Food Chem ; 396: 133649, 2022 Dec 01.
Article En | MEDLINE | ID: mdl-35842998

The present study aimed to tackle research gaps regarding how infrared heating affected macro- and micronutrients of lentil flours from seeds varying in size. Infrared treatments reduced resistant starch contents of lentil flours from 26.1-33.6% to 6.0-17.8%, increased protein digestibility from 73.6-75.0% to 78.2-82.2%, and enhanced soluble dietary fiber contents from 6.1-7.8% to 7.4-10.3%. Infrared treatments did not alter the primary limiting amino acid of Greenstar and Imvincible lentil flours (tryptophan) but changed that of Maxim to methionine + cysteine at 150 °C heating. Regarding micronutrients, the thermal modifications decreased the levels of heat-labile B vitamins, including B1 (thiamine), B3 (niacin), and B9 (mainly 5-methylterahydrofolate), consistent with reducing α-amylase activity to an undetectable level in all the three lentil flours. The novel findings from this research will be meaningful for the agri-food industry to utilize infrared processing as an effective and clean-label approach to improving the nutritional profiles of lentil and other flours.


Lens Plant , Flour/analysis , Heating , Lens Plant/chemistry , Micronutrients/analysis , Nutritive Value , Seeds/chemistry , Starch/metabolism
15.
Food Res Int ; 158: 111546, 2022 08.
Article En | MEDLINE | ID: mdl-35840240

(Cellular) pulse powders are being proposed as ingredients for different foods. However, the effect of manufacturing conditions on the properties of those powders remained unknown. Therefore, this study investigated the effect of specific manufacturing conditions (cooking time, application of cell isolation, and drying method) on the composition, microstructure, and in vitro starch and protein digestibility of lentil powders. Next to powders consisting of isolated cotyledon cells (ICC), this study proposes the production of precooked whole lentil powders (WL), without a cellular isolation step. In a model food system (heat-treated suspension), starch and protein digestion were significantly attenuated for both WL and ICC compared to raw-milled lentil flour. The applied cooking time determined macronutrient digestibility in the powders by (i) affecting the susceptibility of ICC to in vitro digestion, and (ii) determining the microstructural properties of WL. Freeze-dried ICC powder showed a stronger attenuation of amylolysis compared air-dried ICC. This study showed that WL powders have an important potential as innovative food ingredients higher in fiber but lower in starch compared to ICC.


Lens Plant , Starch , Cooking , Dietary Fiber , Flour/analysis , Lens Plant/chemistry , Powders , Starch/chemistry
16.
PLoS One ; 17(6): e0269177, 2022.
Article En | MEDLINE | ID: mdl-35771871

Lentil is an important food legume throughout the world and Pakistan stands at 18th position with 8,610 tons production from 17,457 hectares. It is rich in protein, carbohydrates, fat, fiber, and minerals that can potentially meet food security and malnutrition issues, particularly in South Asia. Two hundred and twenty lentil genotypes representing Pakistan (178), Syria (14), and the USA (22) including 6 from unknown origins were studied for yield, yield contributing traits, and cooking time (CT). Genotype 6122 (Pakistan) performed the best during both years with seed yield per plant (SY) 68±1.7 g, biological yield per plant (BY) 264±2.8 g, pod size (PS) 0.61±0.01 cm, number of seeds per pod (NSP) 2, cooking time (CT) 11 minutes, with no hard seed (HS). The genotypes 6122 (Pakistan) and 6042 (Syria) produced the highest BY, hence these have the potential to be an efficient source of fodder, particularly during extreme winter months. The genotypes 5698 (Pakistan) and 6015 (USA) were late in maturity during 2018-19 while 24783 and 5561 matured early in 2019. A minimum CT of 10 minutes was taken by the genotypes 6074 and 5745 of Pakistani origin. The lowest CT saves energy, time, and resources, keeps flavor, texture, and improves protein digestibility, hence the genotypes with minimum CT are recommended for developing better lentil cultivars. Pearson correlation matrix revealed significant association among several traits, especially SY with BY, PS, and NSP which suggests their use for the future crop improvement program. The PCA revealed a considerable reduction in components for the selection of suitable genotypes with desired traits that could be utilized for future lentil breeding. Structural Equational Model (SEM) for SY based on covariance studies indicated the perfect relationship among variables. Further, hierarchical cluster analysis establishes four clusters for 2017-18, whereas seven clusters for 2018-19. Cluster 4 of 2017-18 and cluster 5 of 2018-19 exhibited the genotypes with the best performance for most of the traits (SY, BY, PS, NSP, CT, and HS). Based on heritability; HSW, SY, BY, NSP were highly heritable, hence these traits are expected for selecting genotypes with genes of interest and for future lentil cultivars. In conclusion, 10 genotypes (5664, 5687, 6084, 6062, 6122, 6058, 6087, 5689, 6042 and 6074) have been suggested to evaluate under multi-location environments for selection of the best one/s or could be utilized in hybridization in future lentil breeding programs.


Lens Plant , Genotype , Lens Plant/chemistry , Lens Plant/genetics , Phenotype , Plant Breeding , Seeds/chemistry , Seeds/genetics
17.
Plant Foods Hum Nutr ; 77(2): 233-240, 2022 Jun.
Article En | MEDLINE | ID: mdl-35553352

The consumption of sprouts has increased as the germination process causes changes in the chemical composition of the seeds, improving their nutritional value. The aim of this work was to compare the total phenolic content and antioxidant capacity of broccoli, lentils and wheat sprouts before and after in vitro digestion, and the total phenolic content and antioxidant capacity between seeds and sprouts. Broccoli and wheat showed no difference in total phenolic content before and after germination, while lentils showed a significant decrease in total phenolic content after germination. The antioxidant capacity of broccoli and wheat increased after germination. After simulated digestion, the total phenolic content and antioxidant activity of broccoli sprouts significantly decreased during digestion in the gastric phase compared to the sprouts before digestion. Lentil sprouts did not show a decrease in total phenolic content during the gastric phase of digestion compared to the sprouts before digestion. However, they showed a significant increase in total phenolic content during the enteric phase. Finally, wheat sprouts showed a significant increase in total phenolic content and antioxidant activity during the gastric phase of digestion compared to grain before digestion. The germination process may increase the antioxidant capacity of sprouts, although this is not always related to the phenolic compound.


Brassica , Lens Plant , Antioxidants/analysis , Brassica/chemistry , Digestion , Germination , Lens Plant/chemistry , Phenols/analysis , Seeds/chemistry , Triticum
18.
Molecules ; 27(4)2022 Feb 14.
Article En | MEDLINE | ID: mdl-35209055

Thermal treatments are widely applied to gluten-free (GF) flours to change their functionality. Despite the interest in using pulses in GF formulations, the effects of thermal treatment at the molecular level and their relationship with dough rheology have not been fully addressed. Raw and heat-treated red lentils were tested for starch and protein features. Interactions with water were assessed by thermogravimetric analysis and water-holding capacity. Finally, mixing properties were investigated. The thermal treatment of red lentils induced a structural modification of both starch and proteins. In the case of starch, such changes consequently affected the kinetics of gelatinization. Flour treatment increased the temperature required for gelatinization, and led to an increased viscosity during both gelatinization and retrogradation. Regarding proteins, heat treatment promoted the formation of aggregates, mainly stabilized by hydrophobic interactions between (partially) unfolded proteins. Overall, the structural modifications of starch and proteins enhanced the hydration properties of the dough, resulting in increased consistency during mixing.


Dietary Proteins/chemistry , Lens Plant/chemistry , Starch/chemistry , Temperature , Cooking , Flour/analysis , Hot Temperature , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Rheology , Spectrum Analysis
19.
Molecules ; 27(3)2022 Jan 26.
Article En | MEDLINE | ID: mdl-35164080

Protein scarcity is the most vital cause of long-lasting diseases and even untimely deaths in some developing nations. The application of protein in food is advantageous from the point of view of non-toxicity, biocompatibility, and dietary benefits. This study aimed to determine the protein contents of the sprouts of Vigna radiates (mung beans), Lens culinaris (lentils), and Cicer arietinum (chickpeas) using the Kjeldahl and Lowry methods. The results obtained from the Kjeldahl method identified protein concentrations of 2.54, 2.63, and 2.19%, whereas the Lowry method results identified protein concentrations of 2.96%, 4.10%, and 1.6% in mung beans, lentils, and chickpeas, respectively. In both the methods, lentils were found to have the highest amount of protein followed by mung beans and chickpeas. Both the Kjeldahl and Lowry methods demonstrated good protein values and low variation in the protein amount in the analyzed samples. Furthermore, the methods had greater sensitivity and comparable experimental variability. The outcomes revealed that assays can be applied for protein analysis in legumes. In the context of a lack of suitable standard procedures for evaluating legumes' compositions, the present study is suitable for food control laboratories. In addition, the studied samples represent a significant source of protein and can be used to fulfil the daily requirements for protein intake and other food applications.


Cicer/chemistry , Lens Plant/chemistry , Plant Proteins/analysis , Seedlings/chemistry , Vigna/chemistry , Spectrophotometry
20.
Molecules ; 27(2)2022 Jan 06.
Article En | MEDLINE | ID: mdl-35056649

Kaempferol is a well-known antioxidant found in many plants and plant-based foods. In plants, kaempferol is present mainly in the form of glycoside derivatives. In this work, we focused on determining the effect of kaempferol and its glycoside derivatives on the expression level of genes related to the reduction of oxidative stress-NFE2L2, NQO1, SOD1, SOD2, and HO-1; the enzymatic activity of superoxide dismutases; and the level of glutathione. We used HL-60 acute promyelocytic leukemia cells, which were incubated with the anticancer drug etoposide and kaempferol or one of its three glycoside derivatives isolated from the aerial parts of Lens culinaris Medik.-kaempferol 3-O-[(6-O-E-caffeoyl)-ß-d-glucopyranosyl-(1→2)]-ß-d-galactopyranoside-7-O-ß-d-glucuropyranoside (P2), kaempferol 3-O-[(6-O-E-p-coumaroyl)-ß-d-glucopyranosyl-(1→2)]-ß-d-galactopyranoside-7-O-ß-d-glucuropyranoside (P5), and kaempferol 3-O-[(6-O-E-feruloyl)-ß-d-glucopyranosyl-(1→2)]-ß-d-galactopyranoside-7-O-ß-d-glucuropyranoside (P7). We showed that none of the tested compounds affected NFE2L2 gene expression. Co-incubation with etoposide (1 µM) and kaempferol (10 and 50 µg/mL) leads to an increase in the expression of the HO-1 (9.49 and 9.33-fold at 10 µg/mL and 50 µg/mL, respectively), SOD1 (1.68-fold at 10 µg/mL), SOD2 (1.72-fold at 10-50 µg/mL), and NQO1 (1.84-fold at 50 µg/mL) genes in comparison to cells treated only with etoposide. The effect of kaempferol derivatives on gene expression differs depending on the derivative. All tested polyphenols increased the SOD activity in cells co-incubated with etoposide. We observed that the co-incubation of HL-60 cells with etoposide and kaempferol or derivative P7 increases the level of total glutathione in these cells. Taken together, our observations suggest that the antioxidant activity of kaempferol is related to the activation of antioxidant genes and proteins. Moreover, we observed that glycoside derivatives can have a different effect on the antioxidant cellular systems than kaempferol.


Antioxidants/pharmacology , Etoposide/pharmacology , Glycosides/pharmacology , Kaempferols/pharmacology , Leukemia, Promyelocytic, Acute/drug therapy , Plant Extracts/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Drug Therapy, Combination , Glycosides/chemistry , HL-60 Cells , Humans , Lens Plant/chemistry , Oxidative Stress
...